3.1.90 \(\int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\) [90]

3.1.90.1 Optimal result
3.1.90.2 Mathematica [A] (verified)
3.1.90.3 Rubi [A] (verified)
3.1.90.4 Maple [A] (verified)
3.1.90.5 Fricas [A] (verification not implemented)
3.1.90.6 Sympy [F]
3.1.90.7 Maxima [F]
3.1.90.8 Giac [F]
3.1.90.9 Mupad [B] (verification not implemented)

3.1.90.1 Optimal result

Integrand size = 23, antiderivative size = 122 \[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {4 a \tan (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a \sec ^3(c+d x) \tan (c+d x)}{7 d \sqrt {a+a \sec (c+d x)}}-\frac {8 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{35 d}+\frac {12 (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 a d} \]

output
12/35*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/a/d+4/5*a*tan(d*x+c)/d/(a+a*sec(d* 
x+c))^(1/2)+2/7*a*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)-8/35*(a 
+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.1.90.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.48 \[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {2 a \left (16+8 \sec (c+d x)+6 \sec ^2(c+d x)+5 \sec ^3(c+d x)\right ) \tan (c+d x)}{35 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]],x]
 
output
(2*a*(16 + 8*Sec[c + d*x] + 6*Sec[c + d*x]^2 + 5*Sec[c + d*x]^3)*Tan[c + d 
*x])/(35*d*Sqrt[a*(1 + Sec[c + d*x])])
 
3.1.90.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.13, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 4290, 3042, 4287, 27, 3042, 4489, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \sqrt {a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^4 \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {6}{7} \int \sec ^3(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} \int \csc \left (c+d x+\frac {\pi }{2}\right )^3 \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4287

\(\displaystyle \frac {6}{7} \left (\frac {2 \int \frac {1}{2} \sec (c+d x) (3 a-2 a \sec (c+d x)) \sqrt {\sec (c+d x) a+a}dx}{5 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\right )+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {6}{7} \left (\frac {\int \sec (c+d x) (3 a-2 a \sec (c+d x)) \sqrt {\sec (c+d x) a+a}dx}{5 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\right )+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} \left (\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{5 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\right )+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {6}{7} \left (\frac {\frac {7}{3} a \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx-\frac {4 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\right )+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} \left (\frac {\frac {7}{3} a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {4 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\right )+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {6}{7} \left (\frac {\frac {14 a^2 \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}-\frac {4 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d}\right )+\frac {2 a \tan (c+d x) \sec ^3(c+d x)}{7 d \sqrt {a \sec (c+d x)+a}}\)

input
Int[Sec[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]],x]
 
output
(2*a*Sec[c + d*x]^3*Tan[c + d*x])/(7*d*Sqrt[a + a*Sec[c + d*x]]) + (6*((2* 
(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*a*d) + ((14*a^2*Tan[c + d*x])/ 
(3*d*Sqrt[a + a*Sec[c + d*x]]) - (4*a*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x 
])/(3*d))/(5*a)))/7
 

3.1.90.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4287
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), 
x_Symbol] :> Simp[(-Cot[e + f*x])*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2 
))), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(b*( 
m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - 
b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 
3.1.90.4 Maple [A] (verified)

Time = 0.98 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.59

method result size
default \(\frac {2 \left (16 \cos \left (d x +c \right )^{3}+8 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+5\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{35 d \left (\cos \left (d x +c \right )+1\right )}\) \(72\)

input
int(sec(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2/35/d*(16*cos(d*x+c)^3+8*cos(d*x+c)^2+6*cos(d*x+c)+5)*(a*(1+sec(d*x+c)))^ 
(1/2)/(cos(d*x+c)+1)*tan(d*x+c)*sec(d*x+c)^2
 
3.1.90.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.67 \[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {2 \, {\left (16 \, \cos \left (d x + c\right )^{3} + 8 \, \cos \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right ) + 5\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{35 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate(sec(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 
output
2/35*(16*cos(d*x + c)^3 + 8*cos(d*x + c)^2 + 6*cos(d*x + c) + 5)*sqrt((a*c 
os(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^4 + d*cos(d*x 
+ c)^3)
 
3.1.90.6 Sympy [F]

\[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sec ^{4}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**4*(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)**4, x)
 
3.1.90.7 Maxima [F]

\[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int { \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{4} \,d x } \]

input
integrate(sec(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 
output
16/35*(35*(d*cos(2*d*x + 2*c)^2 + d*sin(2*d*x + 2*c)^2 + 2*d*cos(2*d*x + 2 
*c) + d)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1 
)^(3/4)*sqrt(a)*integrate((((cos(10*d*x + 10*c)*cos(2*d*x + 2*c) + 4*cos(8 
*d*x + 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 4*cos 
(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(10*d*x + 10*c)*s 
in(2*d*x + 2*c) + 4*sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 6*sin(6*d*x + 6*c) 
*sin(2*d*x + 2*c) + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c) 
^2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2* 
c)*sin(10*d*x + 10*c) + 4*cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 6*cos(2*d*x 
+ 2*c)*sin(6*d*x + 6*c) + 4*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(10*d*x 
 + 10*c)*sin(2*d*x + 2*c) - 4*cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 6*cos(6* 
d*x + 6*c)*sin(2*d*x + 2*c) - 4*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(10*d*x + 10*c) + 4* 
cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 6*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 
4*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(10*d*x + 10*c)*sin(2*d*x + 2*c) 
- 4*cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 6*cos(6*d*x + 6*c)*sin(2*d*x + 2*c 
) - 4*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(2*d*x + 2*c), 
 cos(2*d*x + 2*c))) - (cos(10*d*x + 10*c)*cos(2*d*x + 2*c) + 4*cos(8*d*x + 
 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 4*cos(4*...
 
3.1.90.8 Giac [F]

\[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int { \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{4} \,d x } \]

input
integrate(sec(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.1.90.9 Mupad [B] (verification not implemented)

Time = 17.95 (sec) , antiderivative size = 331, normalized size of antiderivative = 2.71 \[ \int \sec ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=-\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,32{}\mathrm {i}}{35\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )}-\frac {\left (\frac {16{}\mathrm {i}}{7\,d}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,16{}\mathrm {i}}{7\,d}\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}+\frac {\left (\frac {16{}\mathrm {i}}{5\,d}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,128{}\mathrm {i}}{35\,d}\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2}-\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,16{}\mathrm {i}}{35\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )} \]

input
int((a + a/cos(c + d*x))^(1/2)/cos(c + d*x)^4,x)
 
output
((16i/(5*d) + (exp(c*1i + d*x*1i)*128i)/(35*d))*(a + a/(exp(- c*1i - d*x*1 
i)/2 + exp(c*1i + d*x*1i)/2))^(1/2))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i + 
 d*x*2i) + 1)^2) - ((16i/(7*d) + (exp(c*1i + d*x*1i)*16i)/(7*d))*(a + a/(e 
xp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2))/((exp(c*1i + d*x*1i) 
 + 1)*(exp(c*2i + d*x*2i) + 1)^3) - (exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i 
 - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*32i)/(35*d*(exp(c*1i + d*x*1i) 
 + 1)) - (exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d 
*x*1i)/2))^(1/2)*16i)/(35*d*(exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 
 1))